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Abstract—We provide a detailed algorithm to repair a single
node failure in an (n, k) Reed-Solomon code over GF (2`) with
repair bandwidth `

a
(n − 1)(a − s), for any integers a, s such

that a|`, 2a ≥ n+ 1, 2s ≤ n− k. We present the constructions
of necessary lookup tables for the repair. The storage overhead
and the repair complexity of our algorithm are also analyzed.
The algorithm can be applied to the RS(14, 10) over GF (28),
which is a modification of the code in Facebook’s f4 system,
and reaches the lowest repair bandwidth among the existing
schemes to the best of our knowledge. The algorithm can be
also generalized to other codes, including the ones based on
Yahoo Object Store and Baidu’s Atlas.

I. INTRODUCTION

Reed-Solomon (RS) codes are very popular in distributed
systems because they provide efficient implementation and
high failure-correction capability for a given redundancy
level [1], [2]. They are widely used in practical systems such
as Google’s Colossus, Quantcast File System, Facebook’s
f4, Yahoo Object Store, Baidu’s Atlas, Backblaze’s Vaults,
and Hadoop Distributed File System [3, Tab. I]. We define
the repair bandwidth as the required amount of transmis-
sion from the helpers (the remaining nodes) for a single
node (codeword symbol) erasure, maximized over all single
failures. Different repair schemes for reducing the repair
bandwidth of RS codes have been proposed in the literature
[4]–[7].

Let us consider the Galois field F = GF (q`), where q is
a prime number and ` is called the sub-packetization size.
We denote a Reed-Solomon code with code length n and
dimension k over F as RS(n, k). The naive repair scheme
requires the repair bandwidth of k` symbols of the base
field B = GF (q) to repair a single failure. To reduce the
repair bandwidth, the symbols in the original field F can
be mapped to sub-symbols in a smaller subfield using the
trace function. The sub-symbols are downloaded from the
helpers to repair the failure. The repair bandwidth is reduced
when the required sub-symbols from the same helper are
linearly dependent. For example, the full-length codes [4],
[5] achieve the repair bandwidth of (n − 1)(l − s), where
s ≤ logq(n − k). They are optimal when n = q` but
do not perform well when n � q`. The MSR (minimum
storage regenerating) scheme [6] and the asymptotic MSR
scheme [7] achieve the MSR repair bandwidth lower bound
`(n−1)
n−k [8], using a super-exponential sub-packetization size
`. Constructions in [9] provide a tradeoff between the sub-
packetization size and the repair bandwidth. The work in
[10] provides schemes for Facebook’s f4 [11] with repair
bandwidth of 54 bits.

In this letter, we provide a detailed algorithm and the
necessary lookup tables to implement the general ideas
in [9] to repair RS(n, k) over GF (2`). The computation
complexity is analyzed in terms of the number of required
finite field operations and required memories. Moreover,
for ` = 8, 16, 32, 64, which are frequently used sub-
packetization sizes in practice, we provide an efficient
computation of the trace function. Notation: We use [a] to
represent {1, 2, . . . , a} for a positive integer a.

II. REPAIR ALGORITHM FOR RS(n, k) CODE

First, we describe the repair algorithm using the example
of the RS(14, 10) code. The formulas for the general case
will be provided at the end.

The RS(14, 10) code has n = 14 codeword symbols and
k = 10 information symbols. In a storage system, different
symbols are stored in different nodes. The symbols are
over the finite field F = GF (28) = {0, 1, β, β2, ..., β254},
where β is the primitive element of F. As a standard choice
[12], β is the root of 1 + x2 + x3 + x4 + x8 = 0.
For the information symbols uj ∈ F, j = 0, 1, · · · , 9,

let f be the polynomial f(x) =
9∑

j=0

ujx
j . RS codeword

symbols are evaluations of the polynomial f and erasures
can be corrected using interpolation. In this section, we
apply the general construction in [9, Thm. 1] to this specific
code. By restricting the evaluation points to a subfield,
one obtains a low repair bandwidth. Consider the subfield
E = GF (24) = {0, 1, β17, β17·2, ..., β17·14} of F. Let us
choose the set of evaluation points from E, and denote it by
A = {α1, α2, ..., α14} = {1, β17, β17·2, β17·3, ..., β17·13}.
Then, the 14 codeword symbols, in the 14 nodes, are

{Nm = f(αm) =
9∑

j=0

ujαm
j : αm ∈ A}.

We use the trace function to map symbols of F to sub-
symbols of the base field B = GF (2):

trF/B(x) = x+ x2 + x2
2

+ x2
3

+ ...+ x2
7

, (1)

where for every x ∈ F, trF/B(x) ∈ B, i.e., the result of Eq.
(1) is 0 or 1. Any symbol x ∈ F can be reconstructed from
the 8 bits evaluated using the trace function as:

x =

8∑
i=1

γ′itrF/B(γix) =

8∑
i=1

γ′ib
′
i, (2)

where {γ1, γ2, ..., γ8} is a basis for F over B and
{γ′1, γ′2, ..., γ′8} is its dual basis.



2

TABLE I
Dual basis table for RS(14, 10) over GF (28), a = 4, s = 2. β is a root of the primitive polynomial 1 + x2 + x3 + x4 + x8.

Failed node 1 2 3 4 5 6 7 8 9 10 11 12 13 14
γ′1 β203 β118 β254 β203 β33 β220 β16 β118 β16 β33 β152 β152 β220 β254

γ′2 β152 β67 β203 β152 β237 β169 β220 β67 β220 β237 β101 β101 β169 β203

γ′3 β84 β254 β135 β84 β169 β101 β152 β254 β152 β169 β33 β33 β101 β135

γ′4 β16 β186 β67 β16 β101 β33 β84 β186 β84 β101 β220 β220 β33 β67

γ′5 β187 β102 β238 β187 β17 β204 1 β102 1 β17 β136 β136 β204 β238

γ′6 β136 β51 β187 β136 β221 β153 β204 β51 β204 β221 β85 β85 β153 β187

γ′7 β68 β238 β119 β68 β153 β85 β136 β238 β136 β153 β17 β17 β85 β119

γ′8 1 β170 β51 1 β85 β17 β68 β170 β68 β85 β204 β204 β17 β51

Let us assume the node N∗ = f(α∗) fails, 1 ≤ ∗ ≤ 14.
Then, the transmitted symbols from the other nodes (called
helpers) are related to the failed node symbol through the
dual codewords {cmi : m ∈ [14]} of RS(14, 10), for i ∈ [8]:

c∗iN∗ =
∑
m6=∗

cmiNm. (3)

8 dual codewords are required for each failure. To transmit
symbols of the base field B, we take the trace function on
both sides of (3). It is required that the 8 symbols {c∗i : i ∈
[8]} form a basis for F over B, then we can treat them as
{γi : i ∈ [8]} and use (2) to repair the failed node.

The dual codeword symbols are chosen in [9, Thm. 1] as

{cmi : i ∈ [8]} = {υmηtpj,∗(αm) : t ∈ [2], j ∈ [4]}, (4)

where m ∈ [14] and the subscript i is indexed by
t and j as i = 4 × (t − 1) + j. Here {υm,m ∈
[14]} = {β51, β136, 1, β51, β221, β34, β238, β136, β238, β221,
β102, β102, β34, 1} are the column multipliers, {η1, η2} =
{1, β}, and the polynomial pj,∗(x) is

pj,∗(x) = ξj
∏

w∈W
(x− α∗ + w−1ξj), (5)

where ξj = β17(j−1),W = {1, β17, β68}.
Let rankB({a1, a2, ..., ai}) be the cardinality of a max-

imal subset of {a1, a2, ..., ai} that is linearly independent
over B. As analyzed in [9, Thm. 1], we have

rankB({cmi : i ∈ [8]}) =

{
8, if m = ∗,
4, if m 6= ∗,

(6)

and {cmi : i ∈ [8]},m 6= ∗ lie in two subspaces of
dimension 2 spanned by {υmηtpj,∗(αm) : j ∈ [4]}, t ∈ [2].
Now, we have {c∗i : i ∈ [8]} form a basis for F over
B, and we can recover the failed node with only 4 bits
from each helper. Specifically, for helper m, we represent
the basis for the subspace spanned by {cmi : i ∈ [8]}
as {εm,t,z : t ∈ [2], z ∈ [2]}, where{εm,t,z : z ∈ [2]}
are the first two independent elements (hense the basis)
of {υmηtpj,∗(αm) : j ∈ [4]}, for t ∈ [2]. Denote
Dm,v = trF/B(εm,t,zNm), v = 2(t − 1) + z. Since the
trace function is a linear function, {Dm,v : v ∈ [4]} can
reconstruct trF/B(cmiNm), i ∈ [8]. Hence the trace function
of (3) can be evaluated.

Algorithm 1 Repair algorithm for RS(n, k) over GF (2`).
For integers a, s, the bandwidth is `

a (a− s) per helper.
Input: The failed node index ∗ and the remaining nodes
Nm,m ∈ [n],m 6= ∗.
Output: The failed node N∗.
Preprocessing Steps:
Step 1: Construct dual basis table and dual codeword
table (e.g. Tables I and II): Find the dual basis of {c∗i : i ∈
[`]}, denoted by {γ′1, γ′2, ..., γ′`}. For each helper node m,
find the ` dual codewords cmi, i ∈ [`] in (4).
Step 2: Construct subspace basis table and representation
table (e.g. Tables III and IV): Find the basis {εm,t,z, t ∈
[ `a ], z ∈ [a−s]} of the subspace spanned by {cmi : i ∈ [`]},
and the representation of trF/B(cmiNm) for each helper m.
Repair Steps:
Step 3: Calculate and download the binary values Dm,v =
trF/B(εm,t,zNm) from each helper, v ∈ [ `a (a− s)].
Step 4: Represent trF/B(cmiNm) from Dm,v and apply (3):

b′i = trF/B(c∗iN∗) =

n∑
m=1,m 6=∗

trF/B(cmiNm), i ∈ [`]. (7)

Step 5: Reconstruct the failed node by

N∗ =
∑̀
i=1

γ′ib
′
i. (8)

For the general case, the RS(n, k) code over F = GF (2`)
is defined by evaluations points in the subfield E = GF (2a),
for some a|`. Eq. (4) is replaced by

{cmi : i ∈ [`]} = {υmηtpj,∗(αm) : t ∈ [
`

a
], j ∈ [a]}, (9)

where m ∈ [n] and the subscript i is indexed by t and j as
i = a × (t − 1) + j. Here {υm,m ∈ [n]} are the column
multipliers given by υm =

∏
j∈[n],j 6=m

(αm − αj) [13, Thm.

4, Ch.10], and {ηt : t ∈ [ `a ]} is the basis for F over E. The
polynomial pj,∗(x) is

pj,∗(x) = ξj
∏

w∈W
(x− α∗ + w−1ξj), (10)
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where ξj = (β
2`−1
2a−1 )j−1, j ∈ [a], and W is an s-dimensional

subspace spanned by {1, β
2`−1
2a−1 , ..., (β

2`−1
2a−1 )s−1} except

{0}, 2s ≤ n−k. Parameters εm,t,z, Dm,v , v = (a−s)×(t−
1)+z, z ∈ [a−s], t ∈ [ `a ], are defined similar to the case of
RS(14, 10). Moreover, it can be shown that `

a (a − s) bits
are downloaded from each helper. For details see [9].

The detailed steps are provided in Algorithm 1. Due to
space limitation, Tables II, III, and IV are only shown when
Node 1 fails.

Complexity. In what follows, we analyze the space and
computation complexity of our algorithm.

During preprocessing in Steps 1 and 2, Tables I, II, III,
and IV need to be calculated only once. In addition, the
symbols in Table II are intermediate values and do not need
to be stored. Thus, each node stores one corresponding
column of Table I, and one corresponding column of 13
different variations of Tables III and IV, where a variation
is for one potential failure. Note that trF/B(cmiNm), i ∈ [8]
lie in two spaces of dimension 2 spanned by {Dm,1, Dm,2}
and {Dm,3, Dm,4}, hence each symbol in Table IV is 2 bits.
The storage overhead per node is 8 symbols of GF (28) in
Table I, 4 × 13 = 52 symbols of GF (28) in Table III and
8×13 = 104 symbols of 2 bits in Table IV. In total, we need
688 bits per node. For the general case, similar calculations
show that the storage overhead per node is `+ `

a (n−1)(a−s)
symbols of GF (2`) and (n − 1)` symbols of a − s bits.
Moreover, this storage overhead is amortized over the total
storage size of the node.

Next, we analyze the computation complexity in the repair
steps (Steps 3, 4, and 5). We show that some steps do not
require general operations over F. For the commonly used
cases of ` = 8, 16, 32, 64, we present a lemma to calculate
the trace function.

Lemma 1. Let F = GF (28), GF (216), GF (232), GF (264)
and B = GF (2). The trace function trF/B(x) is equal to
one single bit of x, for x ∈ F.

Proof: We prove for the case of F = GF (28), the proof
for other fields have similar steps and we only show the
results. From [14, Thm 2.25], we know that trF/B(x) = 0
if and only if x = δ2 + δ for some δ ∈ F. Let us write x as

x = x0 + x1β + x2β
2 + ...+ x7β

7, (11)

where xi ∈ B, i = 0, 1, ..., 7 are the 8-bit presentation of x,
and β is a root of the primitive polynomial 1 + x2 + x3 +
x4+x8 = 0. Similarly, we write δ as δ = δ0+δ1β+δ2β

2+
...+ δ7β

7, where δi ∈ B, i = 0, 1, ..., 7.
Then, we have trF/B(x) = 0 if and only if

x = δ2 + δ = δ4 + δ6 + δ7 + (δ1 + δ7)β

+ (δ1 + δ2 + δ4 + δ5 + δ6)β
2

+ (δ3 + δ4 + δ6)β
3 + (δ2 + δ5 + δ7)β

4

+ (δ3 + δ5)β
6 + (δ6 + δ7)β

7. (12)

In the above equation, we use the fact that 1 + β2 + β3 +
β4 + β8 = 0 and δi = δi

2 because δi is binary.
Because {1, β, β2, ..., β7} are linearly independent over

B, from (11) and (12), we get trF/B(x) = 0 if and only if
x5 = 0. Thus, trF/B(x) is the same as the 6-th bit of x.

The results for other field sizes are tabulated below:
` primitive polynomial bit index
8 x8 + x4 + x3 + x2 + 1 6
16 x16 + x14 + x10 + x8 + x3 + x+ 1 14
32 x32 + x22 + x2 + x+ 1 32
64 x64 + x4 + x3 + x2 + 1 62

In Step 3, we need to perform 4 multiplications in GF (28)
to calculate εm,t,zNm, t ∈ [2], z ∈ [2] and 4 trace functions
to calculate Dm,v from each helper. From Lemma 1, the cost
of the trace function is just checking the 6-th bit and can be
ignored. In Step 4, as shown in Table IV, the representation
needs only 2 additions: Dm,1 + Dm,2 and Dm,3 + Dm,4,
and Eq. (7) needs 8 × 13 additions in GF (2). This step
is done in the failed node. In Step 5, since b′i, i ∈ [8] are
binary symbols, at most 7 additions in GF (28) are needed.
Therefore, in total we need 4 multiplications in GF (28) at
each helper, plus 130 additions in GF (2) and 7 additions
in GF (28) at the failed node. For general parameters, we
need `

a (a − s) multiplications in GF (2`) at each helper,
plus (n− 1)`min

{
1
a (2a−s − (a− s)− 1) + 1, a− s+ 1

}
additions in GF (2), and ` − 1 additions in GF (2`) at the
failed node.

III. COMPARISON

For RS(14, 10) in GF (28), our algorithm requires a
repair bandwidth of 52 bits for one failure, which is 35%
better than the naive repair [11] that requires 80 bits. The
full-length code in [4], [5] requires 78 bits using the general
scheme. For the special case of RS(14, 10) in GF (28), [4]
found a method that needs at most 64 bits. The MSR scheme
in [6] and the asymptotic MSR scheme in [7] do not provide
a solution for small fields like GF (28). For the special case
of RS(14, 10), [10] provides three different repair schemes
that require 60, 56, and 54 bits.

Our approach can be applied to any RS code as long as
there is an integer a such that a|l and 2a > n + 1. For
the RS(11, 8) in Yahoo Object Store [15], we can set n =
11, k = 8, a = 4, s = 1. When applied to GF (28), the repair
bandwidth of our algorithm is 60 bits, which is 6% better
than the naive scheme. For the RS(12, 8) in Baidu’s Atlas
cloud storage [16], we can set n = 12, k = 8, a = 4, s = 2.
When applied to GF (28), we can achieve a repair bandwidth
of 44 bits, which is 31% smaller than the naive scheme. In
both cases, the full-length code’s repair bandwidth [4], [5]
is higher than that of the naive scheme.
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